

This is not another article about ‘computer
art'.
 The development of the computer has
brought with it a cultural revolution of massive
proportions, a revolution no less massive for
being almost silent. We are living now in its
early stages, and it would be difficult to predict -
certainly well outside the scope of this article -
what changes will be effected within the next
two or three decades. I think it is clear,
however, that well within that period, subject to
such issues as public education, the computer
will have come to be regarded as a fundamental
tool by almost every conceivable profession.¹
The artists may be among them. That will be
the case, obviously, only if it shows itself to
have something of a non-trivial nature to offer to
the artist; if it can forward his purposes in some
significant way.
 There is little in 'computer art' to justify such
an assumption. On the other hand I have come
to believe, through my own work with the
machine, that there may be more fundamental
notions of purpose, and a more fundamental
view of what the machine can accomplish, than
we have seen so far; and this article is intended
as a speculative enquiry into that proposition.
 Speculation is cheap, of course, as the
popular media have shown. If you fantasize any
given set of capabilities for the computer,
without regard to whether the real machine
actually possesses them, then you can have it
achieving world domination or painting
pictures, falling in love or becoming paranoid;
anything you wish. I would hope to offer
something a little more rigorous, if rather less
romantic. Thus I propose to proceed by
describing the machine's basic structure and
functions, and by giving a simple account of
programs of instructions which it can handle
with those functions. It should not prove
necessary to make any speculation which cannot be
stated in terms of these.
 All the same, the undertaking is not without
its difficulties. There is no doubt that the
machine can forward artists' purposes. It has
forwarded a reasonable range of specific
purposes already - some have been trivial, some
have not - and there is no reason why that
range should not be extended. But the
significance of the question would seem to point
to the notion of Purpose rather than purposes,
implying, if not a hierarchical structure with
Ultimate Purpose sitting on top as its informing
principle, certainly a structure of some sort
which relates all of an artist's individual
purposes.
 The chain of interrogation: Why did you
paint this picture blue ? Why did you paint
this picture ? Why do you paint ? is thus a good
deal less innocent than it might seem at first
glance. I suspect that the notion of Ultimate
Purpose enjoys little currency today: but then
it must follow that Purpose is not to be arrived
at by backtracking up a hierarchical structure
from the things that an artist does, much less
from the objects he makes. The problem is

ON PURPOSE
AN ENQUIRY INTO THE
POSSIBLE ROLES OF THE
COMPUTER IN ART

HAROLD COHEN

rather to propose a structure which can be seen,
as a whole, to account for the things the artist
does. The notion of Purpose might then
reasonably be thought to characterize that
structure, as a whole.
 In what terms, then, would it be possible to
maintain that the use of the computer might
‘advance the artist's Purpose' ? Any claim based
upon the evidence that 'art’ has been produced
would need to be examined with some care, and
in the absence of any firm agreement as to what
is acceptable as art we would probably want to
see, at least, that the 'art' had some very
fundamental characteristics in common with
what we ordinarily view as art. This could not
be done only on the basis of its physical
characteristics: merely looking like an existing
art object would not do. We would rather want
to see it demonstrated that the machine
behavior which resulted in the 'art’ had
fundamental characteristics in common with
what we know of art-making behavior.
 This is already coming close to a more
speculative position: that the use of the machine
might be considered to advance the artist's
Purpose if, following the earlier argument, it
could be Seen that this use might itself generate,
or at least update, an appropriate notion of
structure.
 In either of these cases, it must be clear that
my definitions have much in common with the
curious way in which we ordinarily make our
definitions of art. We would probably agree,
simply on the evidence that we see around us
today, that the artist considers one of his
functions to be the redefinition of the notion of
art². Or we might say that the artist uses art in
some way to redefine, i.e. modify himself. But
since he is the agency which is responsible for
the art process which effects the modification,
we could restate this: the artist who uses art to
modify the artist who uses art to modify....
 These are recursive³ structures. I think it will
become evident in due course that my
definition of Purpose is recursive also; and the
balance of this article may suggest that it has, in
fact, been generated by my use of the machine.
For the moment, though, I propose to adopt the
earlier position, and to argue that the machine
behavior shares some very fundamental

Figure l
The Hewlett Packard 2100 A computer is a small,
fast, general purpose machine characteristic of the
‘minis’ now on the market

Figure 2

The 'operations room' of the whole machine,
appropriately enough called the Central
Processing Unit (CPU), is concerned with the
processing of the stuff the machine handles, and
for shifting this stuff around inside the machine.
If you think of 'memory' as a very long string
of numbered boxes, or cells, then the CPU
looks after the business of storing things in the
cells, labeling the cells, keeping up an index of
where all the labels in use are to be found,
retrieving the contents of cells with particular
labels, and so on.
 What are these 'things', this 'stuff’ the
machine handles ? There are different ways of
answering this question, and their relationship
demonstrates one of the most significant features
of the computer. Physically speaking, what the
machine handles is pulses of electrical current,
which are triggered by switches, and in turn
trigger other switches. But the configurations
into which the switches are set actually
represent numbers, and the numbers represent
...well, just about anything that can be
represented numerically: quantities,
dimensions and values obviously, but also
anything which can be given a numerical code,

characteristics with what we normally regard as
art-making behavior. Let us now look at the
computer itself, and then examine what some of
these characteristics may be.
 There is an increasing diversity in computer
design today. At one end of the spectrum
machines are getting smaller, at the other end
they are getting much, much bigger; at both
ends they are becoming much faster. Yet it
remains reasonable to talk about 'the machine'
because, big or small, fast or slow, all computers
do much the same things, and consist,
diagrammatically at least, of the same parts. Part
of it, usually called the Input/Output Unit,
lakes care of its communication with the world
outside itself. Part, as you probably know, is
used for storage – it is the computer’s ‘memory.’

like alphabetic characters, colors or
instructions. The computer is a general-purpose
symbol-manipulating machine, and it is capable
of dealing with any problem which can be given
a symbolic representation. If its accelerating use
in our society rests upon its remarkable
versatility, then its versatility rests in part upon
the fact that a very large number of problems -
much larger than you might suspect - do indeed
lend themselves to symbolic, even numerical,
representation.
The on-off switch might not seem too
promising as a device for counting, since it can
only record 'zero' - off, or 'one' - on. But a race
of creatures with two-hundred and seventy-nine
fingers might consider our own ten-position-
switch system pretty limiting also. We still need

to add a second switch to get up to 99, a third
to get up to 999, and so on. Whatever 'base' you
use for counting, how high you can count
depends upon how many switches - each with
the 'base' number of positions - you put
together. When the 'base' is two, you will need
large number of switches to get very far, but
each of them need only have two positions - on
or off: obviously an ideal situation for counting
electrically. (Fig. 3.)
 If you were to take a somewhat less
metaphorical look at those little cells in the
computer's memory, you would see that each
one was in fact a string of switches. Most small
modern computers have adopted sixteen as a
standard, though not all: and you can figure out
that this sixteen-switch cell - or 'sixteen-bit
word', to use the jargon - will be able to hold
any number up to 216 - I. In a very rough sense,
the size of the machine is measured by how
many of these words it has in its memory, and
its speed by how long it takes to retrieve one.
There would probably be between four and
thirty-two thousand sixteen-bit words in a
small machine: up to a quarter of a million sixty-
four-bit words in a big one. (Fig. 4.)

 The Central Processing Unit is responsible
for moving these words around, and for
performing certain operations upon them.
Ingeniously, it knows from the words themselves
what it is to do, since several bits of each word
are actually reserved for instruction codes.
Thus part 'A' of a word might tell the CPU,
'put the number shown in part "B" into
memory'; or, 'get the number which is in the
cell in memory specified by the number in part
"B" '; or, 'add the number in part "B" to the
number you are now holding, and put the result
back in memory'. A machine might recognize
and act upon as many as fifty or sixty such
instructions, but in fact most of them will be
concatenations of simpler instructions, like 'add',
'subtract,' 'multiply,' 'divide,' 'compare,' 'move
this into memory,' 'move this out of memory.'
 The user sees nothing of all this going on.
Sitting in the outside world, the set of
instructions he composes for the machine will
almost certainly be written in a 'higher level'
language, like Fortran or Algol, and before the
machine can execute that program of

Figure 3
‘Binary' counting is illustrated here by hand, using
each successive finger in its 'on' or 'off’ positions to
count successive powers of two. The total is given in
each case by adding the 'on' fingers together.

Figure 4
This memory module taken from the Hewlett
Packard 2100 A computer illustrates the development
of miniaturization in recent technology. The
module holds 8000 sixteen-bit words -128,000
switches in all. The switches are minute
doughnut-shaped ferrite 'cores' strung on wires.
Courtesy Hewlett Packard

instruction it must first run a program of its
own to translate it into its own numerical code.
A single line of code - a 'statement' - in any
higher-level language will normally break down
into a large number of machine instructions,
and these are executed electronically, literally
by switching electrical currents, with
consequent speeds measured in millionths of a
second per instruction.
 Yet the computer's phenomenal speed is
probably less significant in accounting for its
versatility than the fact that it can break down
any user's program into the same instruction
set. While the machine is running a user's
program it can't do anything else, so that you
might say the machine is identified by the
program. But it can take on a new identity
in the time it takes to clear one program from
memory and load a new one, and in a single day
a moderately sized computer installation may
run a thousand different programs. A
thousand different tasks, a thousand 'different'
machines.
 The man-machine relationship I am
describing here is a very curious one, and not
quite like any other I can think of. Nor is it
possible to deal meaningfully with questions
relating to what the machine can do except in
terms of that relationship. It is true that the
machine can do nothing not determined by the
user's program; that the program
literally gives the machine its identity. But it is
true also that once it has been given that
identity, it functions as independently and as
autonomously as if it had been built to perform
that task and no other. Whatever is being done,
it is being done by the machine.
 When we talk of the computer doing
something, it is implied that it is doing it, or
controlling the doing of it, in the outside world.
For the computer this outside world consists of
any or all of a large number of special purpose
devices to which it may be connected through
its Input/Output Unit, varying widely in their
functions from typing or punching cards, to
monitoring heart beats or controlling flow-
valves. Some of these 'peripheral' devices serve
the computer in the very direct sense that they
provide communication channels to the user,
allowing him both to get his program into the
machine and receive its response to it. The
ubiquitous teletype, and its many more
sophisticated modern equivalents, serve both
needs: combinations of punched-card reader
and line-printer, or paper-tape reader and
punch, do the same. Several peripherals
function as extra memory for the machine, but
then memory simply means storage, and a deck
of punched cards, or a punched paper tape, is as
much a storage medium as is magnetic tape or
the more recently developed magnetic disc.
Once a program has been entered via the
teletype or the card reader, the computer can
permanently record it in any of these media, and
reload it from them when required to do so.
Obviously, these media can be used also for
storing large quantities of information.

that he couldn't possibly do it for himself. He
will almost inevitably find himself confronted
by professionals who are more than anxious to
help him, but that might be a large part of his
problem. ‘What will the machine do ?' he asks.
‘Well,’ he is told, 'it will do A, B, C, or D. You
just choose which you want and we will
program it for you!’ The specialist is well-
intentioned, and it seems unreasonable to
blame him if he is less than well-informed about
what the artist wants. Surprisingly, he will
probably assume the artist to be incapable of
learning to program, or at least unwilling to
do so. Less surprisingly, he will probably hold
the notion that art is principally involved with
the production of 'exciting' images, and that he
will best serve the artist's needs if he can enable
him to produce a large number of widely
differing images, all 'exciting.'
 How would it be to try to write poetry by
employing a specialist in rhyme-forms ? Each
time you get to the end of a line you call him
up to ask what word he thinks would best
convey what you have in mind. The process
sounds rather more promising than trying to
produce art by getting a specialist to write
computer programs on your behalf. If we are
to get past 'computer-art', as I am sure we shall,
to art made with the help of computers, it will
need to be on the basis of a massive change of
mental-set on the part of the artist. 5
 Suppose, now, that I have a computer whose
abilities are like those I have described. Suppose
also that it is connected to a teletype and to a

now that this program has been loaded, I
type 'RUN' on the teletype, and the machine
responds. . . 3. The program has taken
around 1/50,000 of a second to run - the
teletype, being mechanical, takes much longer
to operate, of course - and we know that the
machine can figure out that 1+2=3.
Let’s try something a bit more complicated:

Drawing machine (Fig. 5a, b). Assume that the
computer has already been loaded with the
program by means of which it will be able to
interpret my own instructions. (My instructions
here will not be phrased in any existing 'higher
level' language but in a fictitious one designed
make clear what is being done. In fact I will
describe programs diagrammatically, by
means of what are known as 'flow-charts', rather
than in the line-by-line form required by every
language.) Let’s see if the machine works:

this time, when I have loaded the
program and type 'RUN', the machine will
get the I it has just put in the cell labeled
COST, square it, store the result in BOX3, and
then print out that result. But then, instead of
stopping, it will add I to the l already in COST,
and go through the whole cycle again, printing
out 4 this time, and then 9,16,25, and so on
until it has completed the ten re-iterations called
for.
This is pretty simplistic, of course,
involving a lot of unnecessary PUTting and
GETting into and out of memory. If the
machine's language were a little more
sophisticated, we could have written the
program:

·lr

 Above and right, figure 5a & b

In general, you might say that the computer
may receive messages from any device which is
capable of putting an electrical voltage on a line,
and may control any device which can be
switched by a change in voltage generated by
the computer. The user today has a host of
peripherals at his disposal, covering a wide
range of sophisticated abilities: perhaps for that
very reason it is important to recognize that the
use of more sophisticated peripherals does not
necessarily imply more sophisticated use of the
computer. If you wanted to make an animated
sequence, say of a cube revolving in space, then
a television-like device which could display
individual frames at the rate of thirty per second
would have much to commend it over a
mechanical device like a plotter, whose pen
only moves at five or six inches per second as it
draws the frames one by one. As far as the
computer is concerned, however, the task is to
generate a series of views of a cube rotating in
space, and it will use literally the same
program to do so regardless of what device it
is addressing.
 The point would seem obvious enough not to
need underlining, were it not that many writers
appear to hold the view that the failure of
'computer-art' to achieve images of notable
stature can be ascribed to the lack of
peripherals appropriate to the artist's needs!
Incongruously, the kind of peripheral upon the
basis of which some of these writers project rosy
futures for 'computer-art' don't relate to new
needs, but to old ones. All will be well when the
artist can communicate to the computer with a
paint-brush. 4
 Failure to produce significant images arises
from lack of understanding, not from lack of
machines. The truth is that it has been, and
remains, extremely difficult for any artist to find
out what he would need to know, either to use
the computer, or even to overcome his certainty

where the cell PEN will hold I as a code for 'pen
down' and O as a code for 'pen up'. We might
also have generalized a step further, and said:

because now we might want to write the sort of
reiterative program we looked at earlier, to
draw a whole series of points. In writing such
a program we will now use a shorter notation
for PUT, so that instead of writing PUT 5 in
HOZ, we would write HOZ!5.

will produce this curve.

Figure 7

The thing is that any pair of statements which
relate the horizontal coordinate to the vertical in
a coherent way will produce some sort of curve,
and it's quite easy at this point to start popping
in all kinds of trigonometrical functions and
stand back to see what happens. This one was
written by a passing computer-science student -
I hesitate to say 'invented', since it is almost
entirely a matter of chance whether it will
produce anything pretty, which I think it
does.

Figure 8

with exactly the same result. Note how
powerful a device it is that instead of saying
first 'print the square of l ', then 'print the
square of 2', then 'print the square of 3', we
need only say, 'print the square of whatever is in
the cell labeled COST', repeating the same
instruction every time. All that changes is the
contents of the cell COST. This notion of
referring to a number by the name on its cell is
fundamental to programming, and in fact it is
something we do all the time ourselves. Saying
that a carpet is ten feet long and seven feet wide
is essentially like saying:

and we could obviously build this into a
program for finding the area of the carpet by
adding

the important thing here is the level of
generality, since the program will now work
for whatever values we put in the cells labeled
LENGTH and WIDTH.
 We should be able to get the drawing
machine to draw something now. You will
probably remember the idea that you can
describe the position of any point on a sheet of
paper by two distances, or coordinates: how far
the point is horizontally from the left hand edge
and how far it is vertically from the bottom,
Suppose we were to reserve two cells labeled
HOZ and VERT for storing the two
coordinates for any point to which we wanted
the pen to go. If the pen is sitting in the bottom
left hand corner, and our program says:

the computer will recognize from the command
MOVE that it must send its instructions to the
drawing machine, not to the teletype, and will
thus send out the commands required to make
the pen move to the center of the bed. The only
problem with this program is that it didn't
specify whether the pen was to be down or up.
The program should probably have read:

Figure 6

Not a very exciting drawing, but it does
illustrate a lot of principles. You might be
surprised by the statement
 HOZ!HOZ+!5
but of course this isn't algebra, and it isn't an
equation. It means, simply, 'take what was in
the cell labeled HOZ, add !5 to it and put it
back in the same cell'. The pen has drawn a
series often short line segments which in this
case make up a straight line: and has then
lifted and gone back to the bottom left hand
corner. The same general form will draw lines
which are not straight, if we can simply think
of a way of generating the appropriate pairs of
coordinates. For example:

Figure 9

 It may not be clear why anyone would want to
use such elaborate means to reproduce a drawing
he has already made. The answer is that quite a
lot of things can be done to the drawing by
suitable programs. Not only can it be reduced,
enlarged, shifted, rotated, squashed up, pulled
out (Fig. 9): it can also be transformed as if
it were drawn on a sheet of rubber which was
then stretched in various irregular ways. None
of these operations, or transformations as they
are called, is difficult to program, and since
they can be applied to any set of points whether

would then simply read the first card to find
the first point in the drawing (PEN
would presumably be O until it gets here),
move the pen to that point, read the next
card for the next point, and so on until it
has done all the points. The machine has
duplicated your drawing from your numerical
description.

No doubt the introduction of this sort of
technique for drawing curves into 'computer
art' owes much to the mathematics-oriented
programmer, who would tend to view a curve
essentially as the graph of a mathematical
function. But not all curves can be handled in
this somewhat simplistic way, and artists wishing
to handle more complex curves have been
obliged mostly to use an entirely different
approach, if anything even more simplistic.
Since it is possible to describe any point by its
HOZ-VERT pair, it follows that any drawing
can be approximated by a set of points, each
of which can be treated in the same way, so that
the whole drawing can be described in purely
numerical terms. Imagine then that you have
already done a drawing, that you have reduced
it to a string of points, and that you have typed
the HOZ and VERT values of each point
together with its PEN code, on a series of
punched cards (or, of course, any other
storage medium for which the computer
has the appropriate peripheral). A program
like this

generated from mathematical equations or read
in from cards, they have tended to become the
stock-in-trade of 'computer art'. Indeed, it
would be difficult to see how any computer
animation involving drawn images could
proceed without such transformations.
 For our purposes, however, the question to be
asked is whether the notion of a picture
processor, operating upon some previously
generated image, corresponds in any useful way
to what we know of human art-making
behavior. I think the answer has to be that it
does not. To achieve that correspondence, the
machine would need to generate the image, not
merely to process it.
 Intuitively, it seems obvious that the human
process involves characteristics which are quite
absent from these procedures, and in particular
I think we associate with it an elaborate feed-
back system between the work and the artist;
and dependent upon this system are equally
elaborate decision-making procedures for
determining subsequent 'moves' in the work.
Our enquiry might reasonably proceed by
examining whether the machine is capable of
simulating these characteristics.
 Before going on, I must explain that the
computer possesses one significant ability which
was implied by the earlier examples but never
explicitly stated. It is able to compare two
things, and on the basis of whether some
particular relationship holds between them or
not, to proceed to one of two different parts of
the program. In practice this primitive
decision-making device can be built into
logical structures of great complexity, with the
alternative paths involving large blocks of
program, each containing many such
conditional statements, or 'branches',
 It would be quite difficult to demonstrate a
complex example here in any detail. The
drawing on the cover of this issue of
Studio International was generated by a
program of about 500 statements, of which
over 50 were concatenated from these simple
conditionals, equivalent to about 85 branches.
We might look at one part of that program,
however, about 50 statements in all, which
generates the individual 'freehand' lines in the
drawing. Obviously the flow-chart is a much-
simplified representation.
 The argument behind the sub-program
runs like this: in any 'sub-phase' of a line's
growth it will be swinging to the left or to the
right of its main direction ('straight on' if given
by swings=O). This swing may be constant,
accelerating or decelerating, and both the rate of
swing and the rate of change of swing may be
either slow or rapid. Overall, the line must not
swing beyond a certain pre-set angle from its
main direction. A single full phase will consist of
two sub-phases normally swinging in opposite
directions. Both of these, and the phase itself,
may vary in length, and normally the starting
direction for each full phase does not depend on
that of the previous one. If the line swings
beyond its angular limit, however, all the

this structure does evidently possess a feed
back system not unlike the kind we employ in
driving a car. There is an overall plan - to reach
a destination - which breaks down into a
succession of sub-plans, which are in turn
responsible for generating a series of single
movements. But if an 'emergency' is signaled,
the current sub-plan is abandoned, and a new
one set up.
 The quality of the line is directly related to
the way in which the factors for each new sub-
phase are reset: if the length of each sub-phase
varies enormously, or if the rate of change of
swing varies greatly from one to the next, the
line will tend to be quite erratic. If the angular
limits are set quite small - by the over-all plan -

Figure 10

factors controlling the current phase are
immediately reset and a new full phase is
initiated, starting off in the opposite direction.
It should be noted also that the line has some
definite destination and corrects continuously
in order to get to it. The program would
look something like this:

type of distributions of the digits are both
critical factors in determining the complexity of
the drawing. Under studio conditions I have
varied these factors myself, but for a recent
exhibition I wrote an executive program
which took over that task: and under its control
the machine produced almost three hundred
drawings during the four weeks it was in the
museum. These varied from a few squiggly
lines to quite complex drawings, from a single
large image to anything up to twelve small ones
on a page; and they required no human

employ. Certainly no such claim will be made
for the program I am about to describe.
 This program is one of a series in which
the principal strategy is devised in relation to an
'environment' which the program sets up for
itself. An example would be one in which the
program first designs, and then runs, a
maze: the resultant drawing being simply the
path generated by the machine in performing
the second part. In the present program, the
environment is a rectangular grid of small cells,
into which are distributed sets of digits (Fig 11.)
The strategy adopted in the second part
involves starting at a 'l' from there seeking to
draw a line to a '2', then to a '3' and so on. The
digits are considered as a continuous set, '10'
being followed by ' l', so that but for three
things the program would continue
indefinitely. The first is that no digit may be
used as a destination more than once, and since
a digit is also cancelled if a line goes through its
cell, the number of destinations steadily
reduces, and the program terminates. The
second is that a destination will not be selected
if getting to it involves crossing an existing line,
so that finding a destination becomes more
difficult as the drawing proceeds. And the third
is that there are certain 'preferences' operating
in choosing between those destinations
recognized by the machine as viable. As a
consequence of these constraints, the machine
will eventually find itself unable to continue to
the next digit, and it will then back up to the
previous digit on its part and attempt to go on
again from there. The drawing will be complete
when the back-up procedure has taken it all the
way back to the original 'l'.
 Now it is possible, by manipulating the
factors controlling the machine's 'preferences' -
I will say more about those in a moment - and
by appropriately setting various other factors, to
produce a very wide range of characteristics
in the drawings produced. For example, the
number of cells in the grid and the number and

then the line as a whole will be more ‘controlled.’
How does the program ‘decide’ on new
factors for each new sub-phase ? The ranges
permissible for each factor are precisely
determined in relation to what the range was
last time, indicating another level of feedback.
Within that range, the machine makes a random
choice.
 There seems to be so much popular
misunderstanding about the nature of
randomness that a word might be said on the
subject before going further. Contrary to
popular belief, there is no way of asking the
machine to draw 'at random', and if you try to
specify what you mean by drawing 'at random'
you will quickly see that what you have in mind
is a highly organized and consistent behavioral
pattern, in which some decisions are
unimportant provided they are within a
specified range of possibilities. This is
characteristic of directed human behavior: if
you plan to rent a car, you will probably be
concerned that it should be safe, that its size and
power will be appropriate to your needs. You
probably won't care too much what color it is,
and in being prepared to take whatever comes
you are making a 'random choice' of color:
although you probably know it isn't likely to be
iridescent pink, matte black, or chromium
plated. The same might be said - though with
much narrower limits - of the painter who tells
his assistant to 'paint it red'; or indeed
the painter who uses dirty brushes to mix
his paint. They are all examples of making
a random choice within specified (or
assumed) limits. In fact the computer
generates random numbers between zero
and one, which must then be scaled up to
limits specified by the user's program.
 You might consider that, in human terms,
these limits will be narrow where precise
definition is required, wide where it is not.
For the computer, the existence of limiting
ranges rather than specified values will result in
the possibility of an infinite number of family-
related images being produced rather than a
single image made over and over again. There
might be some difficulty in demonstrating the
case to be otherwise for the artist.
 While it would seem obvious that any
complex purposeful behavior must make use
of feedback systems, there is no suggestion
that such systems alone can account adequately
for the behavior. Moreover the ability to
satisfy some given purpose, as the 'freehand'
line generator does in homing on its destination,
accounts for only slightly more. The formulation
of the purpose is something else: and we would
expect to find in human art-making behavior
not only a whole spectrum of purpose-fulfilling
activities, but also a spectrum of purpose-
formulating activities. If I am to pursue my
enquiry, I must now try to demonstrate the
possibility of such a structure occurring in
machine behavior, although the strategies
employed within the structure may or may not
correspond to the strategies the artist might Figures 13 a, b, c, d, e Figures 11, 12

participation beyond changing the paper and
refilling and changing pans. 6 (Fig. 13.)
 What I have described as being controlled by
the executive is, in a very general sense, the
purpose-formulating mechanism for the
'freehand' line generator, the structure that
determines where the lines are to be drawn. You
might say that I am the purpose-formulating
mechanism for the program as a whole, but
the executive program makes my own part in
the process rather more remote, if no less
significant. In fact, I doubt whether the main
program will be changed much at this point,
since what is at stake for me is not what it does,
but what determines what it does. I am
referring to the 'preferences' mentioned earlier.
 As it reaches each destination, the machine
has to choose between anything up to twenty-
five next destinations, depending upon the state
of the drawing. In the present state of the
program, its preference is for destinations
within certain distance limits, but it is easy to
see how it might 'prefer' long lines to short ones,
a destination near the center of the picture, or in
highly active parts of the picture: or it might
'prefer' the one involving minimum change of
direction; or the reverse of any of these.
Obviously the character of the resultant
drawings would vary enormously as the
machine exercised one 'preference' rather than
another, but in fact I am suggesting something
more complex than simply switching
'preferences'. Suppose, rather, that the machine
exercises its whole range of 'preferences' by
scoring each possible destination for its ability
to satisfy each preference, and taking the
destination with the highest total score as its
choice. It might then choose the destination
which was relatively far away, didn't involve too
much deviation from the current direction, and
was in an area of high activity quite close to the
center of the drawing. I think this would be a
much closer simulation of the way in which
human preference-structures are exercised.
 Let us go one step further, and suppose the
machine to be capable of weighting its scores
for its different 'preferences', and of modifying
these weightings itself. This possibility is by no
means speculative: readers familiar with the
development of the field of Artificial
Intelligence will recognize its similarity to
Samuel's now classic program for a
checkers-playing machine (1959)- They will
recall also that the program enabled the
machine to learn to play, by having it play
against itself, one part always adopting the best
strategy found to date, the other varying the
weightings of the 'preferences' which
determined that strategy until it found a better
one, and so on. In a short time it was able to win
consistently against any human player.
 We might recognize a significant difference
between applying a learning program of this
sort to successful game playing and doing so to
successful art-making. Of course the
difficulty is ours, not the machine's: since
we ourselves would be in some doubt as

to the nature of the criteria towards the
satisfaction of which the machine might aim.
Art is not a deterministic game like checkers, to
be won or lost by the 'player'; and though we
acknowledge, empirically, that some artists are
'better' than others, that some artists do
improve, the problem of formulating general
criteria for improvement may be no different in
relation to the machine than it is for the teacher
in relation to the art student. It is probably
reasonable to assume that there do exist criteria
at levels even more remote from the work than
any I mentioned: in which case we should be
able to formulate them and the machine should
be able to satisfy them. But there remains the
suspicion that satisfactory performance in
art is not to be measured solely by the
satisfaction of explicit criteria, and would
still not be so no matter how far back one
pushed.
 As to those explicit criteria: there would seem
little reason to deny that the machine behaves
purposefully at every level described. Yet no
level defines its own purpose. The learning level
would - but for the difficulties mentioned above
- advise the preference-structure as to the best
way of defining the manner in which the
executive commands the main program to
select the points between which the 'freehand'
line generator is to draw lines. One might say
even that the purpose of each level is to
formulate the purpose for the next level. It is
true, of course, that the machine's organization
is that way because it has been set up that way,
but in considering the nature of explicit
criteria in human art-making behavior we
might reasonably adopt the machine's
organization as a model, and say that these
criteria relate to the formulation of new levels
of purpose in satisfaction of prior purposes. This
can be maintained without any suggestion that
the machine can move higher and higher up the
ladder until it is finally in possession of the
artist's Purpose. On the contrary, it seems to
me that pushing back along the chain of
command - either for the machine or for oneself
- is less like climbing a ladder than it is like
trying to find the largest number between zero
and one: there is always another midway
between the present position and the
'destination'.
 It should be evident, then, that I do not
consider 'serving the artist's Purpose' to be
equivalent to 'talking over the artist's Purpose',
or identify the machine with the artist. I
identify the artist with the whole Purpose-
structure, the machine with the processes which
are defined by the structure and in turn help to
redefine it. Since under other circumstances
these processes too would be played out by the
artist, I am also identifying playing-out with the
computer with playing-out without the
computer. For the machine to serve his Purpose
the artist will need to use it as he uses himself.
There is no reason to anticipate that the use
will be more or less trivial than the use he makes
of himself, but every reason to suppose that the

structure will change in ways which are
presently indefinable.

The step by step account of the computer's
functions and its programs was intended, of
course, to try to demonstrate that the machine
can be used in this way. The original question -
whether the machine can serve the artist's
Purpose - is more redundant than
unanswerable, and is in any case not to be
confused with asking whether artists might see a
need to use it. It is characteristic of our culture
both that we search out things to satisfy current
needs, and also that we restate our needs in
terms of the new things we have found. Nor is it
necessarily immediately clear what wide
cultural needs those things might eventually
serve. The notion of universal literacy did not
follow immediately upon the development of
moveable type, but it did follow that
development, not demand it. Up to this point
the computer has existed for the artist only as a
somewhat frightening, but essentially trivial toy.
When it becomes clear to him that the computer
is, in fact, an abstract machine of great power, a
general purpose tool capable of delimiting his
mind as other machines delimit him
physically, then its use will be inevitable.

(Photos for this article by Becky Cohen.)
1. I wish I had more space here to develop and justify
what may seem to be extravagant views. Readers
wishing to pursue the issue for themselves will find
these views to be almost timid compared to the
current rate of growth and technological development
within the industry. There is extravagance indeed!
Of an estimated 80,000 computers now operating in
the US alone, 13,000 were installed in 1972 by a
single manufacturer. Spending on small computers is
projected by a leading magazine to rise to
$600,000,000 a year in the US by 1975-
2. But not necessarily for other times and other
cultures.
3. Recursion is a powerful mathematical concept which
is difficult to describe in non-mathematical terms:
indeed, the above examples are as good as any I have
been able to find. If you think of a mathematical
function as being a structure which operates upon
something provided to it, then a recursive function is
one which provides itself with the 'something' by its
previous operation. Since the 'something' will be
different for each operation, this is not to be confused
with circular structures: e.g. art is something
produced by an artist, an artist is someone who makes
art. Also, the idea of the boy holding the bag of
popcorn on which there is a picture of the boy
holding the bag of popcorn on which. . . actually
represents a hierarchical structure rather than a
recursive one.
4. I am not making this up. See 'Idols of Computer
Art’ by Robert E. Meuller, Art In America, May,
1972: and my own reply in 'Commentary' in the
following issue.
5. Under grant number A72-1-288 from the National
Endowment for the Arts, Washington, DC I am
currently investigating the feasibility of setting up a
Center for Advanced Computing in the Arts. One
might speculate that, among other things, such a
center might enable artists to use the machine for
their own purposes, rather than presenting them with
a cookery book of possibilities.
6. 'Machine Generated Images', La Jolla Museum,
California. October-November 1972. The drawings
reproduced here are taken from the show. The
machine was able to make drawings in several colors,
but the museum staff had some difficulty in following
its instructions for mounting the appropriate pens. In
the event, it was limited to asking for the correct size
pen to be mounted.

